Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 697: 133989, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31484092

RESUMEN

The effects of climate change on forest growth are not homogeneous across tree species distribution ranges because of inter-population variability and spatial heterogeneity. Although latitudinal and thermal gradients in growth patterns have been widely investigated, changes in these patterns along longitudinal gradients due to the different timing and severity of regional droughts are less studied. Here, we investigated these responses in Mediterranean Black pine (Pinus nigra Arn.). We built a tree-ring width dataset comprising 77 forests (1202 trees) across the Mediterranean Basin. The biogeographical patterns in growth patterns and the relationships between growth and mean temperature, precipitation, drought and atmospheric circulations patterns (NAO -North Atlantic Oscillation-, SOI -Southern Oscillation Index- and MOI -Mediterranean Oscillation index-) were analyzed. Then, we evaluated the spatial and temporal growth synchrony between and within east and west populations. We found different growth and climate patterns in west vs. east Black pine populations, although in both regions growth was driven by similar temperature and precipitation variables. MOI significantly influenced tree growth, whilst NAO and SOI showed weaker effects. Growth of east and west Black pine populations desynchronized after the 1970s when several and uncoupled regional droughts occurred across the Mediterranean Basin. We detected a climate shift from the 1970s to the 1980s affecting growth patterns, changing growth-climate relationships, and reducing forest growth from west to east Black pine forests. Afterwards, climate and growth of east and west populations became increasingly more divergent. Our findings imply that integral bioclimatic and biogeographical analyses across the species distribution area must be considered to adequately assess the impact of climate change on tree growth under warming and more arid conditions.


Asunto(s)
Cambio Climático , Sequías , Pinus/fisiología , Fenómenos Biológicos , Bosques , Región Mediterránea
2.
Oecologia ; 167(3): 847-59, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21562865

RESUMEN

Within-range effects of climatic change on tree growth at the sub-regional scale remain poorly understood. The aim of this research was to use climate and radial-growth data to explain how long-term climatic trends affect tree growth patterns along the southern limit of the range of Pinus nigra ssp. salzmannii (Eastern Baetic Range, southern Spain). We used regional temperature and precipitation data and measured sub-regional radial growth variation in P. nigra forests over the past two centuries. A dynamic factor analysis was applied to test the hypothesis that trees subjected to different climates have experienced contrasting long-term growth variability. We defined four representative stand types based on average temperature and precipitation to evaluate climate-growth relationships using linear mixed-effect models and multi-model selection criteria. All four stand types experienced warming and declining precipitation throughout the twentieth century. From the onset of the twentieth century, synchronised basal-area increment decline was accounted for by dynamic factor analysis and was related to drought by climate-growth models; declining basal-area increment trends proved stronger at lower elevations, whereas temperature was positively related to growth in areas with high rainfall inputs. Given the contrasting sub-regional tree-growth responses to climate change, the role of drought becomes even more complex in shaping communities and affecting selection pressure in the Mediterranean mountain forests. Potential vegetation shifts will likely occur over the dry edge of species distributions, with major impacts on ecosystem structure and function.


Asunto(s)
Cambio Climático , Ecosistema , Pinus/fisiología , Sequías , Calor , Región Mediterránea , Pinus/anatomía & histología , Pinus/crecimiento & desarrollo , Dinámica Poblacional , España , Factores de Tiempo
3.
Tree Physiol ; 30(7): 795-806, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20522420

RESUMEN

The understanding of regional vulnerability to climate change in Mediterranean mountain forests is not well developed. Climate change impacts on tree growth should be strongly related to the steep environmental gradients of mountainous areas, where a temperature-induced upward shift of the lower elevation limit is expected, particularly amongst drought-sensitive species. Trees will adapt not only to changes in mean climate variables but also to increased extreme events such as prolonged drought. In this paper, we investigate the sub-regional temperature and precipitation trends and measure the basal area increment (BAI) in Pinus nigra subsp. salzmannii (Dunal) Franco. Significant differences related to altitudinal and latitudinal gradients and stand-age structure were found in response to long-term trends in climate dryness. Old trees growing at higher elevations showed similar extreme drought sensitivity but maintained almost steady BAI. Declining BAI found in trees at lower elevations and drier sites may imply a higher vulnerability to temperature-induced drought stress, suggesting an impending growth decline and an enhanced die-off risk. Our results illustrate how the effects of long-term warming and short-term drought on tree BAI are influenced by both site conditions and mean stand age in a drought-sensitive Mediterranean pine.


Asunto(s)
Cambio Climático , Pinus/fisiología , Demografía , Sequías , Región Mediterránea , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...